[1]   R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education,” Power Systems, IEEE Transactions on, vol. 26, no. 1, pp. 12–19, Feb. 2011. doi: 10.1109/TPWRS.2010.2051168

[2]   R. D. Zimmerman, C. E. Murillo-Sánchez (2019). Matpower
  [Software]. Available:
doi: 10.5281/zenodo.3236535

[3]   C. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “Secure Planning and Operations of Systems with Stochastic Sources, Energy Storage and Active Demand,” Smart Grid, IEEE Transactions on, vol. 4, no. 4, pp. 2220–2229, Dec. 2013. doi: 10.1109/TSG.2013.2281001

[4]   A. J. Lamadrid, D. Muñoz-Álvarez, C. E. Murillo-Sánchez, R. D. Zimmerman, H. D. Shin and R. J. Thomas, “Using the Matpower Optimal Scheduling Tool to Test Power System Operation Methodologies Under Uncertainty,” Sustainable Energy, IEEE Transactions on, vol. 10, no. 3, pp. 1280–1289, July 2019. doi: 10.1109/TSTE.2018.2865454

[5]   John W. Eaton, David Bateman, Søren Hauberg, Rik Wehbring (2015). GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations. Available:

[6]   The BSD 3-Clause License. [Online]. Available:

[7]   GNU General Public License. [Online]. Available:

[8]   H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On Computational Issues of Market-Based Optimal Power Flow,” Power Systems, IEEE Transactions on, vol. 22, no. 3, pp. 1185–1193, August 2007. doi: 10.1109/TPWRS.2007.901301

[9]   F. Milano, “An Open Source Power System Analysis Toolbox,” Power Systems, IEEE Transactions on, vol. 20, no. 3, pp. 1199–1206, Aug. 2005.

[10]   W. F. Tinney and C. E. Hart, “Power Flow Solution by Newton’s Method,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-86, no. 11, pp. 1449–1460, November 1967.

[11]   B. Sereeter, C. Vuik, and C. Wittenveen, “On a Comparison of Newton-Raphson Solvers for Power Flow Problems”, Journal of Computational Applied Mathematics, vol. 360, pp. 157-169, Nov. 2019. ISSN 0377-0427. doi: 10.1016/

[12]   B. Stott and O. Alsaç, “Fast Decoupled Load Flow,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 859–869, May 1974.

[13]   R. A. M. van Amerongen, “A General-Purpose Version of the Fast Decoupled Load Flow,” Power Systems, IEEE Transactions on, vol. 4, no. 2, pp. 760–770, May 1989.

[14]   A. F. Glimm and G. W. Stagg, “Automatic Calculation of Load Flows,” AIEE Transactions (Power Apparatus and Systems), vol. 76, pp. 817–828, October 1957.

[15]   D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A compensation-based power flow method for weakly meshed distribution and transmission networks,” IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–762, May 1988. doi: 10.1109/59.192932

[16]   G. X. Luo and A. Semlyen, “Efficient load flow for large weakly meshed networks,” IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1309–1316, Nov 1990. doi: 10.1109/59.99382

[17]   D. Rajičić, R. Ackovski, and R. Taleski, “Voltage correction power flow,” IEEE Transactions on Power Delivery, vol. 9, no. 2, pp. 1056–1062, Apr 1994. doi: 10.1109/61.296308

[18]   D. Rajičić and R. Taleski, “Two novel methods for radial and weakly meshed network analysis,” Electric Power Systems Research, vol. 48, no. 2, pp. 79–87, 1998. [Online]. Available: //

[19]   D. Rajičić and A. Dimitrovski, “A new method for handling pv nodes in backward/forward power flow for radial and weakly meshed networks,” in 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), vol. 3, 2001, 6 pp.
doi: 10.1109/PTC.2001.964896

[20]   A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, 2nd ed. New York: J. Wiley & Sons, 1996.

[21]   T. Guler, G. Gross, and M. Liu, “Generalized Line Outage Distribution Factors,” Power Systems, IEEE Transactions on, vol. 22, no. 2, pp. 879–881, May 2007.

[22]   V. Ajjarapu, C. Christy, “The Continuation Power Flow: A Tool for Steady State Voltage Stability Analysis,” Power Systems, IEEE Transacations on, vol. 7, no. 1, pp. 416–423, Feb. 1992.

[23]   H.-D. Chiang, A. Flueck, K. Shah, and N. Balu, “CPFLOW: A Practical Tool for Tracing Power System Steady-State Stationary Behavior Due to Load and Generation Variations,” Power Systems, IEEE Transactions on, vol. 10, no. 2, pp. 623–634, May 1995.

[24]   S. H. Li and H. D. Chiang, “Nonlinear Predictors and Hybrid Corrector for Fast Continuation Power Flow”, Generation, Transmission Distribution, IET, 2(3):341–354, 2008.

[25]   A. J. Flueck, “Advances in Numerical Analysis of Nonlinear Dynamical Systems and the Application to Transfer Capability of Power Systems,” Ph. D. Dissertation, Cornell University, August 1996.

[26]   H. Mori and S. Yamada, “Continuation Power Flow with the Nonlinear Predictor of the Lagrange’s Polynomial Interpolation Formula, ” In Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, pp. 1133–1138, Oct 6–10, 2002.

[27]   R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower’s Extensible Optimal Power Flow Architecture,” Power and Energy Society General Meeting, 2009 IEEE, pp. 1–7, July 26–30 2009. doi: 10.1109/PES.2009.5275967

[28]   TSPOPF. [Online]. Available:

[29]   Optimization Toolbox, The MathWorks, Inc. [Online]. Available:

[30]   BPMPD_MEX. [Online]. Available:

[31]   C. Mészáros, The Efficient Implementation of Interior Point Methods for Linear Programming and their Applications, Ph.D. thesis, Eötvös Loránd University of Sciences, Budapest, Hungary, 1996.

[32]   MINOPF. [Online]. Available:

[33]   B. A. Murtagh and M. A. Saunders, MINOS 5.5 User’s Guide, Stanford University Systems Optimization Laboratory Technical Report SOL83-20R.

[34]   R. H. Byrd, J. Nocedal, and R. A. Waltz, “KNITRO: An Integrated Package for Nonlinear Optimization”, Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma, eds, pp. 35–59 (2006), Springer-Verlag. doi: 10.1007/0-387-30065-1_4

[35]   Gurobi Optimization, Inc., “Gurobi Optimizer Reference Manual,” 2016. [Online]. Available:

[36]   GLPK. [Online]. Available:

[37]   COIN-OR Linear Programming (CLP) Solver. [Online]. Available:

[38]   R. D. Zimmerman, AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation, Matpower Technical Note 2, February 2010. [Online]. Available: \TNtwourl doi: 10.5281/zenodo.3237866

[39]   B. Sereeter and R. D. Zimmerman, Addendum to AC Power Flows and their Derivatives using Complex Matrix Notation: Nodal Current Balance, Matpower Technical Note 3, April 2018. [Online]. Available: \TNthreeurl doi: 10.5281/zenodo.3237900

[40]   B. Sereeter and R. D. Zimmerman, AC Power Flows and their Derivatives using Complex Matrix Notation and Cartesian Coordinate Voltages, Matpower Technical Note 4, April 2018. [Online]. Available: \TNfoururl doi: 10.5281/zenodo.3237909

[41]   A. J. Lamadrid, S. Maneevitjit, T. D. Mount, C. E. Murillo-Sánchez, R. J. Thomas, R. D. Zimmerman, “A ‘SuperOPF’ Framework”, CERTS Report, December 2008. [Online]. Available:

[42]   C. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “A Stochastic, Contingency-Based Security-Constrained Optimal Power Flow for the Procurement of Energy and Distributed Reserve,” Decision Support Systems, Vol. 56, Dec. 2013, pp. 1–10. doi: 10.1016/j.dss.2013.04.006

[43]   H. Wang, On the Computation and Application of Multi-period Security-constrained Optimal Power Flow for Real-time Electricity Market Operations, Ph.D. thesis, Electrical and Computer Engineering, Cornell University, May 2007.

[44]   A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, T.J. Overbye, “Grid Structural Characteristics as Validation Criteria for Synthetic Networks,” Power Systems, IEEE Transactions on, vol. 32, no. 4, pp. 3258–3265, July 2017. doi: 10.1109/TPWRS.2016.2616385

[45]   C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “AC Power Flow Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and PEGASE.” Available:

[46]   S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Contingency Ranking With Respect to Overloads in Very Large Power Systems Taking Into Account Uncertainty, Preventive, and Corrective Actions,” Power Systems, IEEE Transactions on, vol. 28, no. 4, pp. 4909–4917, Nov. 2013.

[47]   P. Cuffe and A. Keane, “Visualizing the Electrical Structure of Power Systems,” IEEE Systems Journal, vol. 11, no. 3, pp. 1810–1821, Sept. 2017. doi: 10.1109/JSYST.2015.2427994

[48]   R. D. Zimmerman, Uniform Price Auctions and Optimal Power Flow, Matpower Technical Note 1, February 2010. [Online]. Available: \TNoneurl doi: 10.5281/zenodo.3237850

[49]   J. Currie and D. I. Wilson,“OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User,” Foundations of Computer-Aided Process Operations, Georgia, USA, 2012.

[50]   Wotao Yin. Gurobi Mex: A MATLAB interface for Gurobi, URL:, 2009-2011.

[51]   A. Wächter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,” Mathematical Programming, 106(1):25—57, 2006.

[52]   O. Shenk and K. Gärtner, “Solving unsymmetric sparse systems of linear equations with PARDISO,” Journal of Future Generation Computer Systems, 20(3):475–487, 2004.

[53]   A. Kuzmin, M. Luisier and O. Shenk, “Fast methods for computing selected elements of the Greens function in massively parallel nanoelectronic device simulations,” in F. Wolf, B. Mohr and D. Mey, editors, Euro-Par 2013 Parallel Processing, Vol. 8097, Lecture Notes in Computer Science, pp. 533—544, Springer Berlin Heidelberg, 2013.

[54]   Optimization Toolbox Users’s Guide, The MathWorks, Inc., 2016. [Online]. Available: